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Abstract An advanced motion-co mpensated predictive video compression system basedon
artificial ncuralnetworks has beendevelopedto effectively eliminate the temporal and spatial
redundancy of video image sequences and thus reduce the bandwidth and storage required for the
transmission and recording of the video sighal. The VI.SIneuroprocessor for high-speed high-ratio
image compression baseduponasclf-organization neural network algorithm is presented in details.
Performances of this self-organization network andthe conventional algorithm for vector quantization
arc compared. The proposed method is quite efficient and canachieve near-optimal results. The new al
processor includes a pipeline codebook generator and a paralleled vector quantizer which obtains a
time complexity O(1) for each quantization vector. A mixed-signal design technique with analog
circuilry to perform neural computation anct digital circuitry to process multiple bt pixel information is
used. A 25-dimensional vector- quantizer prototype chip was designed, fabricated, and tested. ‘1 his
neural chip occupies a compact silicon area of 4.6 x 6.8 mmdn a 2-0-pm scalable CMOS technology. It
provides a computing capability as high as 2 billion connections persecond and can achieve an intrinsic

speedup factor of 110 compared with a SUN-4/75 wor kstation.

1 introduction

The goal of image and video compression is to eliminate the temporaland spatialredundancy
of videoimage sequences and thusreduce the bandwidth and storage required for the transmission and
recording of the video signal. Broadarcasof applications include high-definition television,
teleconferencing, remote sensing, radar, sonar, computer communication, facsimile transmission, image
database management, andadvanced communicationand storage systems|[1].

Fig. 1 shows an advanced motion-com pensated predictive video compression system based on
artificial neural networks. The motion-cstimation neuroprocessor design is based on a locally connected
n~ulti-layer competitive necural network developed forhigh performance optical flow computing
systems[2, 3]. The neuroprocessor desig ncanachieve a high-speed wide range motion estimation. And
thus an cfficient video motion predictor is made since the motion of regions inthe scene is determined so
thatimage points between which the modulationdifferences are derived can bemore accurately
chosen. The image compression neuroprocessor design is based on a frequency-sensitive single- layer
competitive neural network developed for adaptive vector quantization system [4,5]. The
neuroprocessordesign can achieve a high-speed high-ratio image compression by taking advantage of
the massively parallel neural computing architecture and VISI technology. An cfficientimage
compression is therefore achieved sincethecodevectors in the codebook are adaptively trained from
the scene so that the image vectors can be moreaccurately represented by the index of the most matched
codevectors.




In this paper, the fiequency-sensitive competitive neural algorithm and its associated VI.SI
neural processor are presented in details. In section 2, we first describe the frequency-sensitive self-
organization algorithm and present the system-level analysis results. In section 3, we then describe a
massively paralleled VISI neural network hardware to implement this algorithm. In section 4, the
detailed circuit design and simulation of the neural network processor chip are presented. In section 5,
the experimental results of the key building blocks are shown. In section 6, the system-level design of
the neural-based VQ system is described.

2 Frequency-Sensitive Neural Learning Algorithm

Shannon's source coding theorem promises that a high compression ratio can be obtained by
coding vectors instead of scalars [6]. Vector quantization (VQ) has become a powerful method for
speech and image data compression at medium to low bit rates [7]. However, a high-speed VQ
adapting to the changing source data statistics is difficult to implement using the popular Linde Buzo-
Gray (LBG) algorithm [8], because it requires the entire training data be processed in a batch mode.
Neural network approaches appear to be very promising for intelligent information processing [9-16)
due to their massively parallel computing structures and sclf-organization learning schemes. A number
of studies have been reported on using artificial neural networks for VQ applications [10-14). The basic
theory of sclf-organization networks was presented by Grossberg [11], Kohonen [12], and many other
rescarchers [12-15]0 One major chatlenge of using the simple self-organization network is that some of
the neural units may  be under-utilized.  Various modifications have been proposed to solve this
problem [14, 15]. Our frequency-sensitive self-organization (FSO) method modifies Grossberg's
variable-threshold competitive learning method [11] by applying a winning frequency and its
assocjated upper-threshold value to the centroid learning rule. It systematically distributes the
codevectors in the vector space RN to approximate the unknown probability density function p(X) of the
random training vectors. Codevectors quantize the vector space and converge to vector cluster centroids.
This FSO method can produce near-optimal results which will be shown later.

In the 1-loop FSO scheme, the training data is required to pass once in constructing the
codebooks. It is a very powerful scheme for adaptive vector quantization due to its relatively low
compuling requirement and massively parallel computing structure. The 1-loop FSO scheme for
adaptive vector quantization is described as follows:

1) Initialize the codevectors and their winning counts F;(0):

Wi(0) = X (i) or R(i), 1)
I,(()):]’ - 1, . N

ey

where R() is a random vector number generation function, Wi(0) = [W{1(0), Wix(O),, ..., Wipm(O)], M is
the dimension of codevectors, and N is the number of codevectors.
2) Compute the distortion 1;(f) between an input vector X(t) and all codevectors simultancously:

M
D1y = dX (), Wit = D (X[ -Wi(1)?) 2)
j=

where t is the training time index.
3) Select the distortion-computing neuron with the smallest distortion and set its output O(f) to high:
: o . (3)
o0 {] if I)'.(!)<I)’.(!),]§1,1,<N,1;f],
i 0 otherwise.

4) Update the codevectors with a frequency-sensitive training rule and the associated winning counts:
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where S(f) is the frequency-sensitive lear ning 1ate. Notice that only the winning codevector is
updated. The training rule moves the winning codevector toward the training vector by a fractional
amount which decrcases as the winning countincreases. If Fj is larger thananupper-threshold
frequency Fypy, thenset S(1) to zer 0 and no fusther training willbe perfor meet at this neural unit.

5) Repeatsteps (2) through (4) for all training vectors.

Use of the upper-threshold frequency can avoid codevector under-utilization during the
training, process for a poorly chosen initial codebook. The selection of the upper-threshold frequency is
heuristic and depends on source data statistics and training sequence order. Empirically, an adequate
Fih is chosen to be 2 to 3 times larger than the average training frequency. In fact, the mean value of
index frequencies for codevect ors from the | BG method can be used as an upper-threshold frequency.

The performance of the 1-loop FSO method can be incrementally improved by using iteration to
adjust codevectorsinto better cluster centroids. The codebook oblained from the previous iteration is
used as the initial valuesforthecurrent iteration. Afterthe first iteration, the upper-threshold
frequency is notneededbecause a good initial codebook is available.  This methodis called the
multiple-loop FS O method. Inthe LBG method, the initial codebook could be obtained from the
splitting-2 algorithm [8]. The iteration of grouping and calculating centroids in the 1.BG method is
similar to that of updating the closest codevector foreach incoming data through the centroid
technique inthe F5O method. Therefore, the iterative FSO method without the use of upper-
threshold frequency asymptotically equalstothe 1 BGmet hoct.  If the learning process inthe FSO
method is repeated with the same termination criterion for the 1BG method, theresult of the
multiple-loop FSO method could be similar to that of the 1 .BG method.

The origins] andreconstructed synthetic-aperture-radar (SAR) ice images using the1-loop and
?2-loop FSO methods for the 10-bit codebook are shownin Fig. 2.1 histograms of the reconstractedimages
are almost identical to that of the original image. The mean-squated error (MSE) measure is used to
evaluate the reconstructed image quality,
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where s the originalimage of size N7 *N2 and 1’ is its 1cconstructedimage.  The MSE values of images
using the 1 -loop, 2-loop FSO methods, and the | BG methodare listed in “1’able 1 andalso plottedin Fig,
3. The performance figures given for the threw algorithmsare obtained underthe same condition by
training the same picture and being measured with the MSE criterion. Performance of the FSO methods
is very close to the 1 JIG method. The reconstiucted images using the FSO method on 5x5 subimage blocks
are reasonably good.

The large dynamic range of immages requires that the effective compression algorithms should
be adaptive to the local image statistics. For the vector quantization approach, edge degradation is
very severe if no adaptation is allowed for different scene characteristics. If the codebook trained from
the FSO methed for the SAR ice image showninFig. ‘2(a) is usedto encode and decode the Girl image
without any modification, the mean-squared error is 1063. After training this poor codebook by using,
the FSO method, a much smaller MSE valuc of 47 can be achieved. This resultillustrates that the
codcebook can be successfully adjusted according to the statistic change of source data.



In a high-speed hardware design, the resolution limit for synapse arrays by analog, circuitry is
a very important factor. The simulation results from the FSO method for different signal resolutions
show that performance of the 8-bit resolution case is teasonably close to that of floating point
computation. If the codebook size is large, the performance for the 6-bit resolution and that for the
floating, point computation arc not distinguishable. In a larger codebook, each codevectar is trained
from a smaller portion of source data and thus the error induced by finite resolution is also smaller.

3 VLSI Neural I'rocessor Architecture

The proposed VLSI newrocomputing architecture for adaptive image comp ression using
ficquency-sensitive self-organization network is shownin Fig. 4. 'The FSO network consists of two layer:
an inputlayer and a competitive layer.

The inputlayer consists M input neurons which correspond to the elements of the M-dimensional
input vector. Each input neuron gets its input from the external world and distributes the buffered
signal to N distortion-computing neuralunits in the competitive layer. Each distot tion-computing,
neuron calculates a square of Fuclidean distance helm’cwn its codevector and the input vector. The
competitive process is performed throughoutthe whole layer by the winner-take all operation. The
winning neuralunitis determinedaccording to the minimum distortion criterion.  The synapse weights
are thenupdated according to FSOlcarning rule as specified inthe (4), (5), and (6). Thelearning rule
can beimplementedin software by ahostprocessororina dedicated digital signal processing (1 951°)
chip by an algorithm-specific hardware design. .

By using themassively paralleled ncuralcomputing paradigm and the mixed-signal V1I.SI
design technique, the FSO network can be implemented on a chip set. The block diagram of a VI Si
design of the FSO neural processor is shown in Fig. 5. The high-level functional blocks of this neural
processor include an analog veclor quantizer chip and a digital codebook generator chip,

For the analog veclor quantizer, the mixed-signal VI.SI design technique with the analog
circuitry to perform massively parallel neural computation and digital circuitryto process multiple-bit
pixel information is-used. The analog vector quantizer realizes a full-search vector quantization process
for each inputvector at a time complexity 0(1). It consists of the input neurons, programmable synapse
matrix, summing neurons, winner-take-allcells, and an indexencoder.  The programmable synapse
malrix is composed of M x Nsynapse cells which correspond to N M-dimensional codevectors. The
output neuron array is composed of N summing neurons which perform paralicled summation of the
distortions belween the input vectors and codevectors. The winnct-take all block consistsof N
competitive cells which perform paralleled comparison among N inverted distortioh valies and choose
a single winner. It also provides the sufficiently high output level for the winning node against the
rest. The index encoder is a N-fo ndemultiplexer which uses binary codes to encode the N classes.

For the digital codebook generator, the custom 1 )SP circuit design can be used to achicve high-
pet formance requirements.  The digital codebook generator is specialized to implement the FSO
training rule in time complexity (1) for each input vector. It is a co-processor module to supporthigh-
speed neural netwot k learning algotithin. The digitalcodebook generator consists a 1 YSP-based trainer,
a dual-port vector memory, and atiming/controlblock. Ituses digital n-bitindex of winning neuron
genetated by analog VQ to access the corresponding winning codevector and fr equency. ltupdates the
codevector of the winning necural unit anti thenincrcasesthe associated winning frequency by one. The
updated codevector is wt itten to both the digital codebook memory and the analog synapse array. The
codebook memory is built with 2-port dynamic memory anti organized as N-word hy 8* M-bitto reduce
1/0O communication traffic. An incremental adaptation of the codebook is performed in a read-modify-
wrile cycle only wheneverthere is a winning codevectot chosen. The digital address control block is
alsoshared hy theanalog vector quantiz er to address the cot responding synapses for codevector
loading, modification, and refreshing. The digitalinput vector is converted into the analog value using
the digital-to-analog (i >-to-A) converter array and fed to input neurons of the analog vector quantizer.




4 Detailed Circuit Implementation

Advanced studies to improve the circuit performance and to reduce the area/power of the
neural building blocks are essential to implement the highly complex neural systems in V1.5l
technologics [16]. Computer simulation and laboratory experiments on these neural circuits have been
conducted. Figure 6 shows one slice of the FSO network consisting of key circuit blocks, The simulated
processing time for one network iteration is about 250 ns. Each iteration cycle includes input buffering,
synapse multiplication, ncuron summing, winner-take-all operation, and index encoding. The load
capacitances for cach block is estimated and included. The major delay of the network is at the input
neuron due to the large load capacitance associated with the long signal wire. Transistor sizes of the
input neurons can be increased to reduce the delay time.

1.1 Input Neuron

In the input layer, the input neuron design is an unity-gain buffer. The input signal is composed
of M input lines and each input line is applied to one row of N synapse cells. The load capacitance for
the input neuron is quite significant. 1t is estimated to be 5 pF for the N=64 casc. Thus the input voltage
needs to be buffered before it is distributed to the synapse cells. The input neuron is a conventional
operational amplifier in a unity-gain configuration. The experimental input neuron has a DC gain of
95.82 dB and an unity-gain frequency of 10 MHz at a load capacitance of 5 pF. The settling time to
within 0.1% accuracy is 80 nsec for the 1 Vp-p input pulse.

4.2 Output Summing Neuron

In the VISI chip, the output summing neuron converts the total current into the output voltage,
which is applied to the winner-take all circuit. The output of each neuron is the distortion measure
and the minimum among them is to be chosen as the winner in the competitive layer. Since the WTA
circuit selects the maximum input, the output neuron has its summed current converted into the voltage
with the sign reversed.  Current summation occurs at cvery column of the synapse mattix. To ensure the
lincar current-to-voltage conversion for a wide operation range, the output neuron can support the
summing current up to 1 mA. It has the large output buffer to allow the large amount of carrent. The
settling time to within 0.5% accuracy is 25 nsec for 0.8 mA input carrent and 2 pF load capacitance.
Lincar resistance is required to convert the current into the voltage. Since the accuracy of a passive
resistor is very low (could be up to 20% error) without the additional trimming technique. In addition,
to achieve the resistance value of 2 KQ and support large cutrent flow value {up to more than 1 mA)Y | a
relatively large arca is used cven using the well region with high sheet resistance. The MOS
transistors biased in the triode region can be used to synthesize the linear resistance [17]. The lavouts of
the current summing neuron and the linear floating resistor occupy 116 X x 228 A and 116 & x 61 A,
respectively.

4.3 Programmable Synapse

The programmable synapse design is a simple and modified wide-range Gilbert multiplier [16]
which can perform real-valued multiplication in four quadrants and achieve an 8-bit precision. In
order to realize the function specified in (2), the synapse cell calculates the square of the difference
between the input voltage and the synapse value. Figure 7 shows the circuit schematic of the sy napse
cell and the size of each transistor. The layout of one synapse occupies 112 4 x 82 & in the MOSIS
scalable CMOS design [20]).

In order to achieve a wide operation range, the differential pair for (V1-V9) and (Va-V4) are
separated using the current mirror circuitry. The outpul current is obtained from the cascade current
mitror stage consisting of transistors M21 through Mog4. It is approximated by
k
,m%: (V1-VahVa-Va) ®

transistor M3(4) to transistor M13(16), and 31 and By} are the

M1 and M1 transistors, respectively,  Figure 8 shows the DC
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characteristics of the multiplier. The linearity error is less than ?% for aninputvoltage range of -1.8 V
to 1.8 V for bothinputs of (VI -V2) and (V3-V4). The center of the parabolic curves are shifted by the

amount of the weight values. In order to calculate (Xj-W ji)y, the input voltage are rearranged. When
Xi is appliedto V1, V3 and Wji is appliedto V2, V4 , then (8) becomes

Ii= \/W’Qﬂ“ (Xi-Wil =Y i (X;-Wjil, for | i< M, and 1Sj<N. (9

The input voltage Xjis fed into the synapse cell through the input neuron. The synapsc value
Wjj is dynamically stored on the capacitance of the MOS transistors. It must be refreshed periodically
since a parasitic leakage exits in the diffusion-to-substrate junction.  From the measured charge
retention characteristics, a refresh cycles of 0.5 sec is sufficient for the 8-bit synapse accuracy. Since
there are M x N synapsce cells, the required speed should be higher than 2MN Hz for one D-to-A
converter to refresh all the synapse cells. In the prototype chip, there are 1600 synapses and the
required refresh period is about 31 msec.

4.4 Winner-1'ake-All Cell

The performance of the WTA circuit built with transistors biased in the subthresholdregion
116) has limited performance due tothe inherently low speed operation and a small noise immunity.
Our high-precision WTA circuit operates inthe strong inversionregionand can provide fully binary
outputvalues which are easily interfaced with digital circuitry for network learning, Itcanalsobe
extended for a large network of over 1,074 inputs in real-world applications. Qur analog WTA circuit
can determine the winning unit at onc cycle instead of logyN clock cycles using MAXNET'[10].

The WTA circuit schematic and the size of cach transistor arc shown inFig.9. The layout arca
of cach WTA cell is 58 A x 96 1. Onc WTA cell consists of two portions. The first portion converts input
voltage into the current which is compared and redistributed in the commnon signal line. In the second
portion, the current is convertedintothe output voltage. All transistors operate inthe saturation
region. Vepg is the commonnode voltage to which all source terminals of input transistors M7are
connected. As the number of inputs increases, the circuit can be extended by abutting this commonssignal
node from the cells. Throughthis node, the total bias current is contributed by every cell. Since the
source terminal is at a common voltage for all the cells, the corrent flowing through cach cellis
proportional toV;2. Thus, thelargest input can fetch the largest current outof thetotal bias current.
This largest current can make the corresponding output saturated at the positive supply voltage value.
On the other hand, the other outputs will be saturated atthe negative power supply value. The total
bias currentis provided by thetransistor Mg of the cells. Instcad of fixing the amount of the total bias
current outside the cells, each cell provides its own share of the bias current.  Since the bias current
increases in proportionto the number of inputs, the circuitresponse time is independent of the nimber of
inputs. Figure 10 shows t he measurementresults of a X3(-input WTA structure.

5 Prototype Neural Chips

The prototype neural chip design for a 25-dimensional adaptive vector quantizer of 64
codevectors has beenimplementedin a silicon areaof 4.6 nnnx 6.8 mm using the 2-pin CMOS technology
fromthe MOSIS service. This neural network based vector quantizer (NNVQ) chip employs a mixed
analog-digital configuration 7Thepower line from analogand digital blocks are separated toavoid
noise coupling from digital partstothe highly sensitive analog parts. The dic photo of the NNVQ
chip is shown in Fig. 11.

in the analog neural chip design, the common-centroid layouttechnique greatly alleviates the
device mismatch effect [17]. Usc of large devices can also reduce sensitivity to mobility variation and
channel-length modulation variation [18]. The carcfully chosen device sizes of Fig. 1? help to keep the
vatriation of the transconductance constant b below 1 % 119]. Inaddition, the operational dynamic range
of the synapse cell can beincreased with larger devices, which can ensure the 8-bit accuracy for the
analog circuitry. The dimensionality of the NNVQ design is 25 which is functional based on owm




measurement. “1”his chip is also extendible toimplement VQof a larger codebook. An adaptive vector
quantizer of 1,024 codevectors can be implemented by cascading 16 such prototype chips orusing a larger
clip through a submicron fabrication technology. An adaptive vector quantizerof 1,024 codevectors can

be designed in a single chip of 125 mm? silicon arca using 1-pym CMOS technology.

An image compression system can be constructed! with the analog NNVQ chip and adigital
training co-processor. Thesystem throughput is about2 million vectors persccond. Itcan meet a broad
rangeof high-sped applications such as HI)TV whichrequires a throughput rate of 1.2 millionvectors
persecond for 25-dimensional VQ on 1,024-pixel x 1,024-pixel images.

6 (Cocclusion

An advancedmotion-compensated predictive video compression systembased on artificial
neural networks has been developedto effectively eliminate the temporaland spatial redundancy of
video image sequences and thusreduce the bandwidth and storage requiredfor the transmissionand
1 eccording of the video signal. The VI Slimage compression neuroprocessor based upon a frequenc -
sensitive sel f-orga nizationneural algorithm is describedindetails. The efficiency of this FSO
NCUrOpProcessor is mceasured by its compression ability, the resulting distortion, crror tolerance, and the
implementation simplicity. The digital co-processor for the codebook training is also described for a
custom ISP circuit design. By using a mixed anatog-digital design approach in the massively parallel
computation blocks, the advantages of small silicon area, low power consumption, andreducedl/0
requirement can be achieved. A 2?5-dimensional vector quantizer of 64 codevectors has been

implemented in the NNVQ prototype chip. This chip occupies a compact silicon area of 4.6 X 6.8 nim?
in a?2.0-pmscalable CMQOS technology. lIts throughput rate is 2 million vectors per secondand its
cquivalent computation power is 2 billion connections per second.
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Fig. 1 Advancod motion-compensated predictive video compression system with neural networks
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Fig. 2 Image compression using the FSO method on 5x5 subimage blocks.
(a) Original SAR Ice image.
(b) Reconstructed image using 10-bit one iteration FSO codebook; MSE = 86.31.
(c) Reconstructed image using 10-bit tw(~-iteration I'SO codcebook; MSE =82 35
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Fig. 5 Block diagram of the FSO neuroprocessor.
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Fig. 7 Circuit schematic and transistor sizes
Fig.6 Block diagram of the FSO network slice, for the programmable synapse.
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Fig.9 Circuit schematic of the WTAcells.
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Fig. 11 Die photo of the NNVQ prototype chip.
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Fig.10 (a) Measurement results of a 20()"'“5’“[
WTA test structure. Output voltages of the
winner with different nimbers of colls having
the second largest input: 2, 50, 100, 150, and 199,
from left to right.

(b) Response time of the winning output on a
1000-input WTA with different numbers of colls
having the second largest input voltape values.
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